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1. Introduction

In general, frames and coordinates in which some geometrical object has vanishing
components are called “normal”; in particular, these can be the coefficients of a linear
connection on a manifold or in vector bundle. As a result of that, some objects look
in them like in a “flat” or “Euclidean” case, which significantly simplifies certain cal-
culations, formulae, their interpretation, etc. For instance, the normal frames for linear
connections turn to be the mathematical object for description of the inertial frames of
reference in physics, in which some effects of a force field, like the gravity one, locally
disappear.

The history of the theory of normal coordinates and frames goes back to 1854. The major
classical results concerning the normal coordinates for linear connections are summarize
in the table below.

Year Person Result and original reference

1854 B. Riemann Existence and construction of (‘Riemannian’) coordinates in a Riemannian
manifold which are normal at a single po[aii

1922 O. Veblen Existence and construction of (‘Riemannian normal’) coordinates in a manifold
with torsionless linear connection which are normal at a single f2jnt

1922 E. Fermi Existence of (‘Fermi’) coordinates in a Riemannian manifold which are normal
along a path without self-intersectiof8j

1926 T. Levi-Civita Explicit transformation to the Fermi coordinates along paths without
self-intersection{4]

1927 L.P. Eisenhart Existence and construction of particular kind of (‘Fermi’) coordinates on a

manifold with torsionless linear connection which are normal along a path without
self-intersection§5]

1958 L. O'Raifeartaigh  Necessary and sufficient conditions for existence of coordinates normal on
submanifold of a manifold with torsionless linear connection. If such coordinates
exist, a particular example of them (‘Fermi coordinates’) is construéed

In [7-9] the normal frames were introduced and studied for derivations, in particular for
linear connections, with generally non-vanishing curvature and torsion on a differentiable
manifold. Then these objects were investigated for derivations and linear connections in
vector bundle$10]. At last, the papefl1] explores them for linear transports along paths
in vector bundles. The present work is devoted to the introduction and some properties of
normal frames and coordinates for general connections on fibre bundles whose bundle and
base spaces are differentiable manifolds.

The layout of the work is as follows. In Secti@ris collected some introductory material
needed for our exposition. Here some of our notation is fixed too.

Section3 is devoted to the general connection theory on bundles whose base and bun-
dles spaces are differentiable manifolds. In SecBdhare reviewed some coordinates
and frames/bases on the bundle space which are compatible with the fibre structure of
a bundle. Sectio.2 deals with the general connection theory. A connection on a bun-
dle is defined as a distribution on its bundle space which is complimentary to the verti-
cal distribution on it. The notion of specialized frame is introduced. Frames adapted to
specialized frames, in particular to local bundle coordinates, are defined and the local (2-
index) coefficients in them of a connection are defined and their transformation law is
derived.
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The theory of normal frames for connections on bundles is considered in Setti@ns
Section4 deals with the general case. Loosely said, an adapted frame is called normal if
the 2-index coefficients of a connection vanish in it (on some set). It happens that a frame
is normal if and only if it coincides with the frame it is adapted to. The set of these frames
is completely described in the most general case. The problems of existence, uniqueness,
etc. of normal frames adapted to holonomic frames, i.e. adapted to local coordinates, are
discussed in Sectioh If such frames exist, their general form is described. The existence
of frames normal at a given point and/or along an injective horizontal path is proved. The
flatness of a connection on an open set is pointed as a necessary condition of existence of
(locally) holonomic frames normal on that set. Some links between the general theory of
normal frames and the existing one of normal frames in vector bundles are given in Section
6. It is proved that a frame is normal on a vector bundle with linear connection if and only if
in it vanish the 3-index coefficients of the connection. The equivalence of the both theories
on vector bundles is established.

Section7 ends the paper with some concluding remarks.

In Appendix Ais formulated and proved a necessary and sufficient condition for the
existence of coordinates normal along injective mappings with non-vanishing horizontal
component, in particular along injective horizontal mappings.

2. Preliminaries

This section contains an introductory material, notation, etc. that will be needed for our
exposition. The reader is referred for details to standard books on differential geometry, like
[12-14]

A differentiable finite-dimensional manifold over a fidkdwill be denoted typically by
M. HereK stands for the fiel@R of real or the fieldC of complex numberdl = R, C. The
manifolds we consider are supposed to be smooth of €lddsThe set of vector fields,
realized as first order differential operators, o¥ewill be denoted byX(M). The space
tangenttaW atp € M is T,(M) and (M), =7, M) will stand for the tangent bundle over
M. The value ofX e X(M) atp e Mis X, € T,(M). .

If M andM are manifolds and’ : M — M is aC® mapping, thery, :=df : T(M) —

T(M) denotes the induced tangent mapping (or differentialf sdich that, forp € M,
fel, = dfl, 1 Tp(M) — Ty(,)(M)and, for aC functiong onM, (f.(X))(g) := X(g o f)
p > fil,(8) = Xp(g o f), with o being the composition of mappings sign.

By J € R will be denoted an arbitrary real interval that can be open or closed at one
or both its ends. The notatign: J — M represents an arbitrary pathi For aC?® path
y . J — M, the vector tangent tp ats € J will be denoted by (s) := (d/df)|,_;(y(?)) =
v«((d/dr)l) € Ty(5(M), wherer in (d/dr)|, is the standard coordinate function Bni.e.

r: R — R with r(s) := s for all s € R and hence = idy is the identity mapping oR. If

1 some of our definitions or/and results are valid alsafbor evenc® manifolds, but we do not want to overload
the material with continuous counting of the required degree of differentiability of the manifolds involved. Some
parts of the text admit generalizations on more general spaces, like the topological ones, but this is out of the
subject of the present work.
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so € J is an end point of and/J is closed ako, the derivative in the definition of(so) is
regarded as a one-sided derivativegt

Let the Greek indices, u, v, ... run over the range,1..,dim M and{E,} be ac?
frame inT(M), i.e. E,, € X(M) be of classCt and, for eactp € M, the set{EM|p} to be

a basis of the vector spa@g(M). 2 The Einstein’s summation convention, summation on
indices repeated on different levels over the whole range of their values, will be assumed
hereafter.

A frame{E,} or its dual coframgE*} is calledholonomic (anholonomic) if wa =0
(C;\w # 0) for all (some) values of the indices, v, and, where the functions”), are
defined by E,., E)]- == E 0o E, — E, 0 E,, =: waEx; these functions are a measure of
deviation from a holonomic frame and are known asdbm@ponents of the anholonomy
object of { E,,}. For a holonomic frame there always exist local coordingté$ onM such
thatlocally E,, = 3/9x* and E* = dx*. Conversely, if{x*} are local coordinates o,
then the local fram¢a/ox*} and local coframédx*} are well defined and holonomic on
the domain offx*}.

If n € Nandn < dim M, ann-dimensionaliistribution A onM is defined as a mapping
A p— A, assigning to eacp € M ann-dimensional subspacs, of the tangent space
T,(M)ofMatp, A, C T,(M).Adistribution isintegrable if there is asubmersioft : M —

N such that Keiy, = A; a necessary and locally sufficient condition for the integrability
of A is the commutator of every two vector fieldsAto be inA. We say that a vector field
X e X(M)isin A and writeX € A, if X, € A, forall p e M. A basis on U € M for A
isasetfXy,..., X,}ofnlinearly independent (relative to functiobs— K) vector fields
inAly,i.e.{X1ilp, ..., Xul,}is abasis ford, forall p € U.

A distribution is convenient to be described in terms of (global) frames or/and coframes
overM. Infact,if pe Mandg=1,...,n,ineachA, C T,(M), we can choose a basis
{X9|p} and hence a framgX,}, X, : p = X,l| ,in{A,: pe M} C T(M), we say that
{X,} is a basis for/inA. Conversely, any coﬁection of linearly independent (relative
to functionsM — K) vector fieldsX, on M defines a distributiop — {Egzl feXol,:

f@ € K}. Consequently, a frame ifi(M) can be formed by adding to a basis fara set
of (dim M — n) new linearly independent vector fields (forming a fram&{@/) \ {4, :
p € M}) and v.v., by selecting linearly independent vector fields @, we can define a
distributionA on M.

3. Connections on bundles

Before presenting the general connection theory in Se&i@nwe at first fix some
notation and concepts concerning fibre bundles in Se&titin

2 There are manifolds, like the even-dimensional sph&fésk € N, which do not admit global, continuous
(and moreove€* for k > 1), and nowhere vanishing vector fie[d$). If this is the case, the considerations must
be localized over an open subsetWn which such fields exist. We shall not overload our exposition with such
details.
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3.1. Coordinates and frames on the bundle space

Let (E, m, M) be a bundle with bundle spaég projections : E — M, and base space
M. We suppose that the spadgsandE are C? differentiable, if the opposite is not stated
explicitly,® manifolds of finite dimensions € N andn + r, for somer € N, respectively;
so the dimension of the fibres 1(x), with x € M, i.e. the fibre dimensions of( 7, M),
isr.

Let the Greek indices, u, v, ... run from 1 ton = dim M, the Latin indices, b, c, . ..
take the values from + 1 ton + r = dim E, and the uppercase Latin indicgs/, K, .. .
take values in the whole sgt, . . ., n + r}. One may call these types of indices respectively
base, fibre, and bundle indices.

Supposdu’} = {u*, u®} = {ut, ..., u"*"} are local bundle coordinates on an open set
U C E,i.e. on the setr(U) C M there are local coordinat¢s*} such that* = x* o m;
the coordinategu”} (resp.{u®}) are calledbasic (resp fibre) coordinates [14].

Further only coordinate changes

{u”, u®y — {u*, n%} (3.1a)
on E between bundle coordinates will be considered. This means that

@(p) = fU@H(p), ... u"(p)),

@(p) = futp), - u (), u (), ... " (p)) (3.1b)

for p € E and some functiong’. The bundle coordinatgs*, u“} induce the (local) frame
{9, 1= 8/0u*, 3, := 9/0u”} overU in the tangent bundle spaZ§F) of the tangent bundle
over the bundle spadé Since a chang€8.1) of the coordinates of impliesd; — 3; :=
a/ou’ = au’ /o', the transformatioli3.1) leads to

(B> 3) = (O, ) = (By, Bp) - A. (3.2)
Here expressions likéf, d,) are shortcuts for ordered - r)-tuples like @1, . .., 9,4,) =
([0 Z=l’ [aa]g:,gﬂ), the centered dotstands for the matrix multiplication, and the trans-
formation matrixA is

aul ntr [%} Onxr gg: 0

A= [W] - wb | [ oub Tt et | (3-3)

1,J=1 [a,}u} [3[,64} ourt uc

where Q. is then x r zero matrix. Besides, in expressions of the f@a , like the one in
the r.h.s. 0f(3.2), the summation excludes differentiation, idga’ := a’d; = >, a’d;; if

3 Most of our considerations are valid alsoGit differentiability is assumed and even some of them hold on
€ manifolds. By assuming? differentiability, we skip the problem of counting the required differentiability
class of the whole material that follows. Sometimes, fedifferentiability is required explicitly, which is a
hint that a statement or definition is not valid otherwise. If we want to emphasize that some text is valid under
a C! differentiability assumption, we indicate that fact explicitly. However, the proofsesimas 5.1 and A,1
Proposition 5.2and all assertions iAppendix ArequireC? differentiability, which will be indicated explicitly.

4 If (U, v) is a bundle chart, with : U — K" x K" ande? : K” — K are such that?(c1, ..., ¢;) = cq € K,
then one can put® = ¢“ o pr, o v, where pp, : K" x K" — K" is the projection on the second multipli&f .
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a differentiation really takes place, we writga’) := 3=, 3,(a’). This rule allows a lot of
formulae to be written in a compact matrix form, li&2). The explicit form of the matrix
inverse to(3.3)is A~1 = [9ii!/au’] = - -- and it is obtained fron{3.3) via the change
u <> .

The formula(3.2) can be generalized for arbitrary framgs} = {e,, e,} and{e;} =
{€,., €4} In T(E) whoseadmissible changes are given by

(er) = (eu ea) = (1) = (€, €q) = (ev, ep) - A, (3.4)

whereA = [A]]is a nondegenerate matrix-valued function with a block structure similar
to (3.3), viz.

(AT = Oncr A% 0
= (3.5a)

= b byn+
A [AM] nw=1..., n [Aa]Z,b;n+l AZ AZ

with inverse matrix

1 [An]t 0
s <—[AZ]_1 [Aa]-[AL] [Ag Y ) (3.5b)

HereAf, : U — Kand[A]and[Aj] are non-degenerate matrix-valued functiongisuch
that [A)] is constant on the fibres &, i.e., forp € E, A} (p) depends only on(p) € M,
which is equivalent to any one of the equatiotjs= B), o w anddA), /ou® = 0, with [B) ]
being a nondegenerate matrix-valued functiomr¢ii) € M. Obviously,(3.2)corresponds
to (3.4)with e; = 8/du’, &, = 8/0i’, andA] = au”’ /30

All frames{e;} onE connected vig3.4)—(3.5)which are (locally) obtainable from holo-
nomic onege;}, induced by bundle coordinates, via admissible changes, will be referred
asbundle frames. Only such frames will be employed in the present work.

3.2. Connection theory

From a number of equivalent definitions of a connection on differentiable mafifé)d
Sections 2.1 and 2.2ve shall use the following one.

Definition 3.1. A connection on a bundle (E, &, M) is ann = dim M- dimensional distri-
bution A” on E such that, for eacp e E and thevertical distribution A® defined by

AV p A =Ty Ha(p) = Ty (p)) (3.6)
with : : 7= 1((p)) — E being the inclusion mapping, is fulfilled
AV ® Al =T,(E), (3.7)

whereA" : p — A" C T,(E) and@ is the direct sum sign. The distributiaft’ is called
horizontal and symbolically we writeA? @ A" = T(E).

A vector at a pointp € E (resp. avector field on E) is said to bevertical or horizontal
if it (resp. its value ap) belongs toA} or Af,, respectively, for the given (resp. any) point
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p- AvectorY, e T,(E) (resp. vector field” € X(E)) is called ahorizontal lift of a vector
Xy(p) € Tn(p)(M) (resp.vector field X € X(M) on M = nt(E)) if m,.(Y,) = Xy(p) for the
given (resp. any) poing € E. Sincerr*w’ : A’;, — Ty(p)(M)is avector space isomorphism
for all p € E [14, Section 1.24]any vector inTy(,) (M) (resp. vector field ilt(M)) has a
unique horizontal lift inT,(E) (resp.X(E)).

As a result of(3.7), any vectorY, € T,(E) (resp. vector fieldr € A(E)) admits a
unique representatiol, = Y} & Y (resp.Y = Y" @ Y") with Y? € AY and Y} € A%
(resp.Y' € AY andY" € A). If the distributionp > A" is differentiable of clas€™,
m € NU {0, oo, w}, itis said that theonnection A" is (differentiable) of class C™. A con-
nectionA” is of classC™ if and only if, for everyC™ vector fieldY on E, the verticaly”
and horizontal’” vector fields are of class”.

Let us now look on a connections’ on a bundle £, 7, M) from a view point of (local)
frames and their dual coframes AinLet {¢,,} be a basis fonr", i.e.e, € Al and{eu|p} is

a basis fora” forall p € E.

Definition 3.2. Aframe{e;} in T(E) overE is calledspecialized for a connectiom” if the
firstn = dim M of its vector fieldge, } form a basis for the horizontal distributiat’* and
its lastr = dimz—1(x), x € M, vector fields{e,} form a basis for the vertical distribution
AV,

It is a simple, but important, fact that the specialized frames are (up to renumbering)
the most general ones which respect the splitting’6f) into vertical and horizontal
components. Suppose;} is a specialized frame. Then the general element of the set of all
specialized frames is (s€2.4))

v

AV 0
. ]:(A;eu,Ageb), (3.8)

(en- €a) = (ev, ep) - 0 A

where A} ]/ ,_; and LAZ]ZE’ZHH are non-degenerate matrix-valued functiongpwhich
are constant on the fibres of (=, M), i.e. we can se\), = B}, o w and A% = B, o 7 for
some non-degenerate matrix-valued functiaBjs|[and [Bb] on M.

Sincem,| 4 : {X € A"} — X(M) is an isomorphism, any basis, } for A" defines a
basis{E, } of X(M) such that

E, = 1| sn(gn), (3.9
and v.v., a basi$¢E,, } for X(M) induces a basif,, } for Al via

eu = (il p) " HE ). (3.10)
Thus a ‘horizontal’ change

eu > &y = (B}, o m)ey, (3.11)

which is independent of a ‘vertical’ one given by

gq > €4 = (B2 o m)ep (3.12)



B.Z. Iliev / Journal of Geometry and Physics 56 (2006) 780-812 787

with {e,} being a basis for\V, is equivalent to the transformation
E,+ E, = B)E, (3.13)

of the basig E,,} for X(M), related via(3.9)to the basige, } for A”. Here [B!,] and [B]
are non-degenerate matrix-valued functiongn

As m.(g,) = 0 € X(M), the ‘vertical' transformation$3.12) do not admit interpreta-
tion analogous to the ‘horizontal’ oné8.11) However, in a case of aector bundle
(E, &, M), they are tantamount to changes of frames in the bundle gpaice. of the
bases for Sed, =, M). To show this, define a mappindoy

v:SecE, m, M) — {vector fields inA"},

VY Y i pe YY), = % (p + tYn(p)), (3.14)
t=0

i.e. v sends a sectiolir € Sec , =, M) of the vector bundle &, =, M) to a vector field
v(Y) =: YV € A(E) such thal’” at p € E is the vector tangent to the path> p + 1Y, (,),
t € R, at the poinp, that is atr = 0; sincer(p + tY(,)) = n(p) forall t € R, due top €
7Y n(p)) and Yn(y) € 7 1(r(p)), we haver,((d/dt)|,—o(p + tYx(p))) = O which means
thatY) € A} forall p € E, i.e.Y" is a vertical vector field o&. Since the mapping is a
linear isomorphisnfil4], the sections

E, = U_l(gu) (315)

form a basis for Sed, 7, M) as the vertical vector fields form a basis forA?. Conversely,
any basig E,} for the sections ofE, =, M) induces a basi&,} for AY such that

eq = V(E,). (3.16)
As v andv~1 are linear, the chang8.12)is equivalent to the transformation
E,+— E,= BYE, (3.17)

of the frame{E,} in E related to{e,} via (3.15) In this way, we see thakere is a bijective
correspondence between the set of specialized frames {e1} = {e,, e4} on a vector bundle
(E, m, M) and the set of pairs ({E .}, {Eq}) of frames {E,.} on T(M) over M and {E,} on
E over M. Since conceptually the frames (M) andE are easier to be understood and
in some cases have a direct physical interpretation, one often works with thempaie(
Tl an(e)} {Ea = v—1(e,)}) of frames instead with a specialized frafig} = e, €als
forinstance E,,} and{E,} can be completely arbitrary frames#ig;M) andE, respectively,
while the specialized frames represent only a particular class of franT&&in

One cannutatis mutandis localize the above considerations whfis replaced with an
open subsdly; in M andE is replaced witi/ = 7~1(U),). Such a localization is important

5 It should be mentioned the evident fact that a frBg} in T (M) overM is also a basis for the modukgM)
of vector fields oveM and hence is a basis for the set SEQW), 7, M) of section of the bundle tangent A,
due toX(M) = Sec (M), =, M). Similarly, a frame{E,} on E over M is a basis for the set Seg(xr, M) of
sections of the vector bundI&(z, M).
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when the bases/frames considered are connected with some local coordinates or when they
should be smooth.
Let {e,} be a frame inT'(E) defined over an open sét C £ and such thate,|,} is a
basis for the space Tp(nfl(n(p))) tangent to the fibre through p € U. Then we can write
the expansion

[D,] O

u U v a b 123

e, e’)=(D"e, + D%e,, D’ep) = (e,, €p) - , 3.18
(M a) ( nEH pu-a ab) (v b) <[DZ][DZ] ( )
where{eV} is aspecialized frame inT (U), [D}]and [Db] are non-degenerate matrix-valued
functions onU, and Dy, : U — K.

Definition 3.3. The specialized framgX;} overU in T(U), obtained from(3.18)via an
admissible transformatiof8.4) with matrix

([D’Jl—l 0 )
A = )
0 [Dg?

is calledadapted to the frame {e[} for A".”

The frame{X;} adapted tde;} is independent of the choice of the specialized frame
{e¥} in (3.18)and can alternatively be defined By, = (elgn) Lo mi(ey) andX, = e,.

If {u’} are bundle coordinates dii, the frame{X;} adapted to the coordinate frame
{9/0u’} is said to beidapted to the coordinates {u'}.

According to(3.4), the adapted framgX;} = {X,,, X,} is given by the equation

Vv

(X, Xa) = (ev, ) - = (ep + IJev. ea). (3.19)

+I7 8
where the functiong’} : U — K, called @-index) coefficients of A" in {X;}, are defined
by
[]:=+[D5] - [D)] (3.20)
A changefe;} — {€;} with
[A}]

(EM’ Ea) = (evs eb) : ([AZ] [AZ]

) = (A;),_ev + Azeb, AZeb)» (3.21)

where A} ] and [A"] are non-degenerate matrix-valued functiondpmvhich are constant
onthe fibres of £, 7, M), andAZ : U — K, entails the transformations (s18)—(3.20)

6 Recall, not every manifold admitsgégobal nowhere vanishing™, m > 0, vector field (sefl5] or[17, Section
4.24); e.g. such are the even-dimensional sph8fésk € N, in Euclidean space.

7 Recall, here and below the adapted frames are defined only with respect tofeamede,,, e,} such thafe,}
is a basis for the vertical distribution” overU, i.e.{e,|,} is a basis fom;’, forall p € U. SinceA is integrable,
the relatiore, € A foralla=n+1, ..., n+rimplies ey, ep]- € AV foralla,b=n+1,..., n—4r.
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5 % ~ b~ o~ b
(X, Xa) > (X, Xo) = (6, + Ijep, eq) = (AZXV, A Xp)

= (Xv, Xb) :

A 0
IR (3.22)

It T = (A5 AL — A7) (3.23)

of the frame{ X} adapted tde;} and of the coefficients}; of Ain (X}, i.e.{X;}is the
frame adapted te;} andf“,‘j are the coefficients of” in {X;}.

Note 3.1.If {e¢;} and{e;} are adapted, theAf’L = 0. If {Y;} is a specialized frame, it is
adapted to any framge, = A} Y, ¢4 = Aby,} and hence any specialized frame can be
considered as an adapted one; in particular, any specialized frame is a frame adapted to
itself. Obviously, the coefficients of a connection identically vanish in a given specialized
frame considered as an adapted one. This leads to the concepbmatd frame to which

is devoted the present paper. Besides, from the above observation follows that the set of
adapted frames coincides with the one of specialized frames.

In particular, if{u’} and{i’} are local bundle coordinates with non-empty intersection
of their domains, we can set

d - d
ey = W7 ey = 8',21, (324)
which entails
ouV ou® oub
v o_ b __ b _
" - 8]}/”“’ AM - aﬁu’ Aa —_ 81,/20. (325)
So, when the holonomic choi¢8.24)is made, the transformatidB.23)reduces to
o ou“ ou\ ou’
a a __ b
eIy = (Bub ry+ 814") PP (3.26)

Let(E, m, M) be avector bundle. According to the above-said in this section,@afapted
frame{X,;} = {X,, X,} in T(E) is equivalent to a pair of frames (M) andE according
to

(X, Xa} < (Ej = mal an (X)), {Ea = v H(X0))). (3.27)

Supposg X} and{X;} are two adapted frames. Then they are connected by3(&)
and (3.22)

Xy =B omX,,  X,=(B,omXy, (3.28)

where [B; ] and [Bg] are some non-degenerate matrix-valued function&fomhe pairs of
frames corresponding to them, in accordance @t&7) are related via

E, = BJE,, E, = BYE, (3.29)

and vice versa.
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In the vector bundles are used, as we shall do below, the so-called vector bundle coordi-
nates which are linear on their fibres and are constructed as followW&&cp. 30).

Let {¢,} be a frame irE over a subsel/y; € M, i.e.{e,(x)} to be a basis im~1(x) for
all x € Uy Then, for eachy € 7~1(Uy), we have a unique expansipn= p“e,((p)) for
some numberg? € K. Thevector fibre coordinates {u®} onm—(Uy,) induced (generated)
by the framde,} are defined via“(p) := p* and hence can be identified with the elements
ofthe coframde®} dual tofe,}, i.e.u® = ¢*. Conversely, ifu'} are coordinates an=1(Uy,)
for somelU,; € M which are linear on the fibres ovély,, then there is a unique franfe, }
in 7~1(Uy;) which generate$u®} as just described; indeed, consideririg?, ..., u"*"
as 1-forms onr—1(Uy,), one should define the franie,} required as a one whose dual is
{u“}, i.e. via the conditiong“(e,) = &7,.

A collection{u"} of basic coordinateg*} and vector fibre coordinatés®} onz—1(Uy)
is calledvector bundle coordinates on w=1(Uy,). Only such coordinates af will be em-
ployed in what follows.

The following result gives a full local description of the linear connections on vector
bundles® The importance of these connection comes from the fact that they are compatible
with the linear structure of the vector bundles and are the most widely used connections.

Proposition3.1. Let A" be alinear connection on avector bundle (E, w, M) and { X1} be the
frame adapted for A" to a frame {e;} such that {e,} is a basis for A®. Let {u'} = {u*, u®} be
vector bundle coordinates on U C E. Suppose that the frame {e;}, to which {X 1} is adapted

to, is such that
vV
B AR 0

, = (0, dp) -
(614 ea)lU ( v b) (Bfuon)-u" BZO?T

= (B, 0 m)d, + ((BL, o 7) - u)dp, (BL o 7)), (3.33)

8 A connection on a vector bundle is linear if the parallel transport generated by it is a linear mg@ingore
precisely, we recall the following two definitions.

Definition 3.4. Lety : [0, 7] — M, witho, € Rando < 7, andy, be the unique horizontal lift of in E passing
throughp € 7~ X(y([o, t1)). Theparallel transport (translation, displacement) generated by (assigned to, defined
by) a connectiom’ is a mappind® : y + P, assigning to the patjra mapping

P ia () » n (), yilotd—M (3.30)
such that, for eacp € 7~ 1(y(0)),

PY(p) = yp(). (331
Definition 3.5. A connection on a vector bundle is callBdear if the assigned to it parallel transport is a linear

mapping along every path in the base space, i.e. if the ma§piB@)is linear for all pathy : [0, 7] — M in the
base, viz.

P”(pX) = pP"(X), (3.32a)
PY(X +Y) = P"(X) + P"(Y), (3.32h)

wherep € K andX, Y € 77 1(y(0)).
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where d; = 9/du’, [B,]and [ B2] are non-degenerate matrix-valued functions on (U), and
Bfu : w(U) — K. Then the 2-index coefficients I'} of A" in (X} have the representation

rd=—(rg,on) u (3.34)

on U for some functions Fb“M : w(U) — K, called 3-index coefficients of A" in {X}.

Remark 3.1. The representatiof8.34)is not valid for frames more general than the ones
given by (3.33) Precisely, Eq(3.34)is valid if and only if (3.33) holds for some local
coordinategu’} on U—see(3.23)

Remark 3.2. Since the vector fibre coordinatésare 1-forms o/, the 2-index coefficients
(3.34)of a linear connection are also 1-forms on the bundle space.

Lemma 3.1 (cf. [19, p. 27). Let (E, n, M) be a vector bundle, {u'} be vector bundle
coordinates on an open set U C E, and A" be a connection on it described in the frame
{X1}, adapted to {u'}, by its 2-index coefficients FS- The connection A" is linear if and
only if, for each p € U,

ri(p) = =I5, (x(p)u’(p) = (T4, o 7) - u”)(p), (3.35)
where I",j’# : t(U) — K are some functions on the set w(U) € M and the minus sign before

I, bau in (3.35)is conventional.

Proof. Take aCl pathy : [0, 1] — 7(U) and consider the parallel transport equation
dy; (1)
dr
wherey, : [0, 7] — U is the horizontal lift ofy throughp € 7= (y(0)), y* := u® o y, and
yH () = d(x* o y(2))/dr = d(u* o y(¢))/dr asu* = x* o = for some coordinatefc} on
7(U).2
Sufficiency. If (3.35)holds,(3.36)is transformed into
dy; (1)
dt

= I} (vp @)™ (), (3.36)

= — I}, (V)Y 07" (), (3.39)

9 If {w!} = {o* = du*, 0 = du? — Fﬁdu“} is the frame dual t¢X/,}, then the patly, is given as the unique
solution of the initial value problem

w(y,) =0, (3.37a)
Yp(to) = p, (3.37b)

which is tantamount to

dr dr -

u! (¥p(t0)) = u’ (p). (3.38h)
Eq. (3.38a)is (a form of) the parallel transport equation algng

— I0) 0. (3.382)
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which is a system of linear first order ordinary differential equations for th&unctions

)7;“, ...,;71’3”. According to the general theorems of existence and uniqueness of the
solutions of such systeniig0], it has a unique solution
V() = Y5 (0p° (3.40)

satisfying the initial conditior)7;‘,(o) = u“(p) =: p*, whereY = [Y}] is the fundamental
solution of(3.39) i.e.

d .
O U, O Ol i YO Y0) =y = 5] (341)

The linearity of(3.30)in p follows from (3.40)for t = t.

Necessity. Suppos€3.30)is linear inp for all pathsy : [0, t] — 7(U). Theny,(r) :=
PYIlo1 () is the horizontal lift ofy|[o; 7] throughp and (cf.(3.40) Yp(t) = A(y (1)) p? for
someC? functionsAj§ : m(U) — K. The substitution of this equation (8.36)results into

0A}(x)
axH

-y p? = L) ().
x=y)=r(7p(1)

Sincey : [0, 7] — M,we getEq(3.35)from here, for = o, with F,j‘u(x) = —(0A%(x)/0x")
for x € 7(U). ]

Proof of proposition 3.1. If ¢; = 3/8u’ for some bundle coordinatés’} onE, the propo-
sition coincides witH.emma 3.1 Writing (3.23)for the transformatiorjo;} — {e;}, with
{er} given by(3.33) we get(3.34)with

Iy, = (B HiCTy, By, + Bj).

where?I¢ are the 3-index coefficients ai” in the frame adapted to the coordinates
{u'}. O

Let{X,} and{X;} be frames adapted {e;} and{¢;}, respectively, such that (¢f3.33)
B om 0

3.42
(Bfuon)-ucBZorr ( )

(é/u Ea) = (eVs eb) :

and A" admits 3-index coefficients ifX;} and{X;}, which means thate;} and{z;} are
obtainable from the frame$/du’} and{d/di'}, respectively, for some bundle coordinates
{u!} and{@i’} via equations likg3.33) (with &; for ¢; andd; for 9, in the letter case) in
which theB’s need not be the same ag#42)1° Then, due t¢3.23) and (3.34he 3-index
coefficientsF,;’M and fzfu of A" in respectively{X;} and{X;} are connected by (see also
Footnote 10)

Iy, = (B Yaryg, By + BS,)B;. (3.43)

10 Notice, from(3.42)follows that the vector fibre coordinatgs’} and{ii?} are connected by* = (Byom)- ib.
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It can easily be checked that the transformafien — {¢;}, with {¢;} given by(3.42) is
the most general one that preserves the existence of 3-index coefficigvitpaivided they
existin{e;} in a sense that, fle;} is given by(3.33)(which leads t@3.34) and{¢'} is given
by (3.42) then there exist vector bundle coordinafes which generate{:e’} according to
(3.33)with &; for ¢y, 3, for 9, and somes’s, WhICh Ieads tc(3 34)with I for I andd

for u. Introducing the matrices), := [I}¢ 104", 1, T == [T 1240, 11, B :=[Bj], and
= [By, ], we rewrite(3.43)as
I, =Bt (B, +B,) B (3.43)

A little below (see the text after E¢§3.45)), we shall prove that the compatibility of the
developed formalism with the theory of covariant derivatives requires further restrictions
on the general transformed fram@s21)to the ones given b{3.42)with

B, =Eu(B) - B"'=B)E,(B)- B, (3.44)
whereE, = .| 4n(X,) = m 41 ((BY, 0 m)X,) = B),E,.. In this case(3.43) reduces to
I,=B)B " (I-B+E,(B)=B),(B" I— E(B %) B. (3.45)

At last, a few words on the covariant derivatives opera¥oige in order. Without lost
of generality, we define such an operator

V 1 X(M) x Sec(E, m, M) — Sel®(E, &, M), V:(FY)+ VY (3.46)

via the equations

VrrcY = VFY + VY, (3.47a)
VY = fVrY, (3.47b)
Vi(Y + Z) = VeY + Vi Z, (3.47¢)
Ve(fY)=F(f)- Y+ f-VFY, (3.47d)

whereF, G € X(M), Y, Z € Sec(E, =, M), and f : M — K is a C! function. Suppose
{E,.} is a basis forX(M) and {E,} is a one for Sed(E, n, M). Define thecomponents
Iy, M — K of V in the pair of frames{E .}, {E.}) by

Ve, (Ep) = Iy, Eq. (3.48)
Then(3.47)imply

VrY = FYEL(Y®) + I}, Y")E,

for F=F'E, € X(M) and Y = Y°E, € Secl(E, m, M). A change (E,}, (E.})) —
({EL}, {Eq)}), given via(3.29) entails

Iy, = Ty, = BLBSI DU, BY + Eu(B)), (3.49)
as a result 0{3.48) In a more compact matrix form, the last result reads
Iy =B)B ™" (I- B+ E,(B) (3.49)

with I, == [1%,], T = [F,], and B = [BY).
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Thus, if we identify the 3-index coefficients af*, defined by(3.34) with the components
of Vv, defined by(3.48)! then the quantitie$3.43) and (3.49 must coincide, which
immediately leads to the equali(g.44) Therefore

Bl‘ion

((BLEL(B)(B~Yd) o m)u BL o (3.50)

B=[B]]

(eus eq) (é;u eq) = (ey, ep) -

is the most general transformation between framd¥if) such that the frames adapted to
them are compatible with the linear connection and the covariant derivative corresponding
to it. In particular, such are all frame#8/du’} in T(E) induced by some vector bundle
coordinatequ’} on E as the vector fibre coordinates transform in a linear way:like>
=(Bjom)- u?; the rest members of the class of frames mentioned are obtained from
them via(3.50) with e; = 3/0u’ and some non-degenerate matrix-valued functiatjd [
andB.
If {X;} (resp.{X;}) is the frame adapted to a franfe;} (resp.{¢,}), then the change
{er} — {21}, given by(3.50) entails{X;} — {X;} with {X;} given by(3.28)(see(3.21)
and (3.22). Since the last transformation is tantamount to the change

({Eu} AEa)) = (Eu}. {Ed)) (3.51)

of the basis ofX(M) x Sec E, =, M) corresponding tdX;} via (3.27)—(3.29), we can
say that the transitio(B.51)induces the chang.49) of the 3-index coefficients of the
connectionA”. Exactly the same is the situation one meets in the literg@1rd 3,14jwhen
covariant derivatives are considered (and identified with connections).

Regardless that the chan@e50)of the frames irf'(E) looks quite special, it is the most
general one that, throudB.22) and (3.27)is equivalent to an arbitrary chan{f51)of a
basis inX(M) x Sec €, &, M), i.e. of a pair of frames iff (M) andE.

The above results, concerning linear connections on vector bundles, can be generalized
for affine connections on vector bundfésFor instance, the analogue Bfopositions 3.1
reads.

11 such an identification is justified by the definition Bfvia the parallel transport assigned 44 or via a
projection, generated by, of a suitable Lie derivative or(E)—see[19].

12 ysually the affine connections are defined on affine burfdd 6} In vector bundles they can be introduced
as follows.

Definition 3.6. A connection on a vector bundle is termgfine connection if the assigned to it parallel transport
P:y P”:727l(y(0)) = n~1(y(r)) is an affine mapping along all paths [0, 7] — M in the base space, i.e.

PY(pX) = pP"(X) + (1 - p)P(0), (3.52a)
PY(X 4+ Y) = PY(X) 4+ P"(Y) — P7(0), (3.52h)

wherep € K, X, Y € 77 1(y(0)), ando is the zero vector in the fiore~1(y(0)), which is aK-vector space.

An affine connection for whiclP” (0) is the zero vector imr—1(y(z)) is a linear connection and vice versa—see
Definition 3.5
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Proposition 3.2. Let A" be an affine connection on a vector bundle (E, v, M) and {X wl
be the frame adapted for A" to a frame {e;} such that {e,} is a basis for A’ and

Bl‘ior[ 0

(Bf.uoﬂ)'uc Blom

(e ea)ly = (v, 0p) - [

= (B}, o m)dy + ((BL, o ) - u)dp, (BY 0 m)dp), (3.53)

where 3y := 3/du’ for some local bundle coordinates {u'} = {u"* = x* o 7, u® = E} on
UCE,|[B] and | B2] are non-degenerate matrix-valued functions on U, and Bf‘u U — K.
Then the 2-index coefficients I') of A" in {X [} have the representation

rt=—(rg,on) u’"+G%on (3.54)

on U for some functions Fba;u G, U—K

Remark 3.3. The representatiof8.54)is not valid for frames more general than the ones
given by (3.53) Precisely, Eq(3.54)is valid if and only if (3.53) holds for some local
coordinategu’} on U—see(3.23)

Proof. Writing (3.23)for the transformatiofd;} — {e;}, with {e;} given by(3.53) we
get(3.54)with

g, = (B NeCry, By + B;,),  Gy= (B3 Y, GBy,
where’ I, and’G?, are defined via the 2-index coefficieAtS¢ of A" in the frame adapted
to the coordinateu’} via I’y = —(°Iy, o x) - E” +? G4 o w, which is the general form
of the 2-index coefficients, in such a frame, of an affine connection. The last assertion can
be proved similarly td.emma 3.1 O
Let {X;} and{X;} be frames adapted {e;} and{¢;}, respectively, with (cf(3.53)
Blom 0 1

(Bé’” om)-u® Bbom

(€ €a) = (ev, ep) - (3.55)

in which (3.54) holds for A”. Then, due ta(3.23) and (3.54)the pairs Cf,p G}) and
(I, G4) for A in respectively X ;} and{X} are connected by

Iy, = ((BS1™ YT, B, + BS,) B, (3.56a)
Gy = ([BS1 1iGoB),. (3.56b)

From here an@3.43) we conclude thaf, are coefficients of a linear connection on the
same bundle. We call idborresponding to the affine connection under consideration.

Remark 3.4. It can be proved that the transformatifwy} — {e;}, with {¢;} given by
(3.55) is the most general one that preserves the existence of the ref@tiat) for A"
provided it holds infe;}.
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4. Normal frames: general case

Inthe theory of linear connections on a manifold, the normal frames are defined as frames
in the tangent bundle space in which the connections’ (3-index) coefficients vanish on some
subset of the manifolfR1,14,6—9] The definition of normal frames for a connection on a
vector bundle is practically the same, the only difference being that these frames are in the
bundle space, not in the tangent bundle space over the basq 5ppdde present section
is devoted to the introduction of normal frames for general connections on fibre bundles
and some their properties.

To save some space and for brevity, in what follows we shall not indicate explicitly that
the framege;} = {e,, e}, with respect to which the adapted frames are defined, are such
that{e,} is a (local) basis for the vertical distributiof” on the bundle considered.

Definition 4.1. Given a connectiom” on a bundle £, 7, M) and a subset/ C E. A
frame { X} in T(E) adapted to a frame {e;} in T(E) and defined over an open subgeif £
containing or equal t&/, V 2 U, is callednormal for A" overlon U (relative to {e;}) if all
(2-index) coefficientd’; of A vanish in it everywhere oti. Respectively{ X} is normal

for A" along a mapping g - Q — E, Q # @, if {X;} is normal forA” over the seg(Q).

Let {X,} be the frame in'(E) adapted to a framée,} in T(E) over an open subset
V C E. Thenthe framéX;} in T(E) adapted to a framg,}, given by(3.21) in T(E) over
the same subsétis normal forA” overU c V if and only if

(Ap I — AD)lu =0, (4.1)

due to(3.22) and (3.23)Since1“fj depend only om" and{e;}, the existence of solutions
of (4.1), relative toA), and AZ, and their properties are completely responsible for the
existence and the properties of frames normalAbover U. For that reason, we ca.1)
the (ystem of) equation(s) of the normal frames for A" over U or simply thenormal frame
(system of) equation(s) (for A" overU).

In the most general case, when no additional restrictions on the frames considered are
imposed, the normal frames E@.1) is a system ofur linear algebraic equations for
nr + n? variables and, consequently, it has a solution depending ardependent param-
eters. In particular, if we choose the functiotis : U — K (with det[A),] # 0, o) as such
parameters, we can write the general solutiofof) as

(AL} AL DI = (AL AT AL D u. (4.2)

It should be noted, Ed4.1) or its general solutioi@.2) defines the fram¢e;} and the
frame{X,} adapted tde,;} only onU and leaves them completely arbitrary Bn, U, if it
is not empty.

Proposition 4.1. Ler {X;} be the frame adapted to a frame {e;} in T(V) C T(E) defined
over an open set V. C E and I';; be the coefficients of a connection A" in {X;}. Then all

frames (X}, normal on U V for the connection A", are adapted to frames {1} given on
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U by
ulu = (Ah(ev + Iep)lu 2alu = (Abes)lu. (4.3)

where [A},] and [AL] are non-degenerate matrix-valued functions on V which are constant
on the fibres of (E, t, M). Moreover, the frame {X 1} adapted on V to {¢1}, given by (4.3)
(and hence normal on U), is such that

)N(/L|U = (A;}LXU)lU = Ell.lU’ ia|U = (AZXb)|U = Ea|U- (4-4)

Proof. Apply (3.22), (3.21), and (3.19r the choicg4.2). O

Eqgs.(4.4) are not accidental as it is stated by the following assertion.

Proposition 4.2. The frame {X;} in T(E) adapted to a frame {21} in T(E) and defined
over an open set V C E is normal on U C 'V if and only if on U is fulfilled

Xilv =¢ly. (4.5)

Proof. Apply (3.19) or (3.22)andDefinition 4.1 O

Thus one can equivalentligfine the normal frames as adapted frames that coincide on
some set with the frames they are adapted to or as frames (in the tangent bundles space over
the bundle space) that coincide on some set with the frames adapted to them.

Since any specialized frame is adapted to itself Beénition 3.3 and (3.18 with
D‘II = 5{ ), the sets of normal, specialized, and adapted frames are identical.

As we see fronfProposition 4. lwhich gives a complete description of the normal frames,
the theory of normal frames in the most general setting is trivial. It becomes more interesting
and richer if the class of framés;}, with respect to which are defined the adapted frames,
is restricted in one or other way. To the theory of normal frames, adapted to such restricted
classes of frames ifi( E), are devoted the next two sections.

5. Normal frames adapted to holonomic frames

The class of holonomic frames induced by local coordinateg (see Sectior3.2) is
the most natural class of framesH{E) relative to which the adapted, in particular normal,
frames are defined. To specify the consideration of the previous section to normal frames
adapted to local coordinates @nwe sete; = 8/du! andé; = 9/dii’, where{u’} and{ii’}
are local coordinates ofi whose domains have a non-empty intersectioandU C V.
Then the matrix 7] in (4.1)is given by(3.3)(as{e;} — {¢;} reduces t¢3.2)), so that the
normal frame Eq(4.1) reduces to theormal coordinates equation (see alsq3.26)

o’ b o’

ub * - Qun
due to(3.1), which is a first order system af- linear partial differential equations on U
relative to the- unknown functiongi”*1, ..., i"t7}.

=0, (5.1)
U
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Since the connection\” is supposed given and fixed, such are its coefﬁcié?lftsin
{9/0u’}. Therefore the existence, uniqueness and other properties of the solut{@nk)of
strongly depend on the sét (which is in the intersection of the domains of the local
coordinategu’} and{ii’} on E).

Proposition 5.1. Ifthe normal frame Eq. (5.1)has solutions, then all frames {X 1} normal on
U C E and adapted to local coordinates, defined on an open set V. C E such that V 2O U,
are described by

. X = (ASXp)lu =

— , 5.2

Xulu = (AL X))y =

where {X [} is the frame adapted to some arbitrarily fixed local coordinates {(u!}, defined
on an open set containing or equal to V, {ii'} are local coordinates with domain V and such
that t® are solutions of (5.1), and A = du’ /9ii! on the intersection of the domains of {u'}
and {i!}.

Proof. Apply Proposition 4.1for ¢; = 3/du’ and é; = 8/aii’ and then us€3.2) and
33). O

This simple result gives a complete description of all normal frames, if any, adapted to
(local) holonomic frames. It should be understood clearly, normal @the frame{ X},
adapted tqd/dii’} and coinciding with it orU, but not the framed/dii’}; in particular, the
frame{d/dii’} is holonomic while the framéX ;} need not to be holonomic, even oh if
the connection considered does not satisfies some additional conditions, like the vanishment
of its curvature orU.

Consider now briefly the existence problem for the solution®df). To begin with, we
emphasize that i(b.1) enter only the fibre coordinat¢g®}, so that it leaves the basic ones
{u*} completely arbitrary.

Proposition 5.2. IfE is of class C?, p € E is fixed and U = {p}, then the general solution
of (5.1)is

i(q) = g + gi{—To(p)@" — P") + (@ — P} + fi5(@)(a" — P )a’ — p?).(5.3)

where g% and g} are constants in K = R, C, det[gj] # O, 0o, the point q is in the domain
Vof{u'},q' :=ul(q), p' := ul(p), and f¢, are C? functions on V such that they and their
first partial derivatives are bounded when q' — p'.

Proof. Expand u®(q) = f*(u*(g), ..., u"(q), ..., u"(q)) = f(q*. ..., ¢"") into a
Taylor’s first order polynomial with remainder term quadratic4h € p’) and insert the
result into(5.1). In this way one getés.3)with ¢¢ = i“(p) andgy = (aﬁ“/aub)|,,. O

Now we would like to investigate the existence of solutiongsof)along pathg : J —
E,i.e.forU = B(J). The main result is formulated below Bsoposition 5.3For its proof,
we shall need the following lemma.
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Lemma 5.1. Let y: J — M be a regular Ct injective path in a C® real manifold M.
For every so € J, there exists a chart (U1, x) of M such that y(so) € U1, x : Uy — J1 X
RIMM =1 o some open subinterval J1 C J, so € J1 and x(y(s)) = (s, to) for all s € J1
and some fixed tg € RIMeM—1

Proof. Letsgp € J be a point in/ which is not an end point of, if any, and (, y) be a

chart withy(so) in its domain,U > y(so), andy : U — RY™=M_From the regularity of,

y # 0, follows that at least one of the numb&ﬂz{so) % dimz M (50), wherey‘ =y oy,

is non-zero. We, without lost of generality, choose this non-vanishing component to be
y(so).13 Then, due to the continuity gf (y is of classC?) and according to the implicit

function theoreni22, Chapter lll, Section 8]13, Sections 1.37 and 1.3§P3, Chapter

10, Section 2]Jthere exists appen subinterval/y C J containingso, J1 3 5o, and such that

¥, # 0 and the restricted mapping|, : J1 — y;(J1) is aC* diffeomorphism on its

image. Define a neighborhood

= {plp € U.y!(p) € yH(J1)} = y H(rp(Jr) x RA™ML) 5 (),

and a chart{(1, x) with local coordinate functions
= ()/‘];|‘]1)_l oyt XK=y = yf, ox!+ 5, k=2,..., dimgM, (5.4)

wherer§ € R are arbitrarily fixed constant numbers. Sige/dy’ = (1/y;)s}, axk /oyt =
—(74/v3) fork = 2, andix* /0y’ = 8} fork, I > 2, the Jacobian ofthe changé} — {x'} at

p € Uris 1/yX(p) # 0, co. Consequently : Uy — J3 x R4M:M~1is really a coordinate
homeomorphism with coordinate functioxis
In the new chartl(1, x), the coordinates of(s), s € J; are

YHo) = @on)) =5, )=o) =1 k=2 (5.5)
i.e. x(y(s)) = (s, fo) for someto = (i2, ..., 13™M) ¢ RAMM-1, 0

Lemma 5.1means that the chart/(, x) is so luckily chosen that the first coordinate in
it of a point alongy coincides with the value of the corresponding path’s parameter, the
other coordinates being constant numbers. Moreovéf; ithhe pathy can be considered as
a representative of a family of pathé, £) : J1 — M, t € RIMM-1 defined byy(s, £) :=
x (s, ) for (s, £) € J1 x RAMM—1-indeed,y = (-, to) or y(s) = n(s, to), s € J1 C J.

Proposition5.3. Let A" bea C1 connection on a real C3 bundle (E, 7, M),n =dimM > 1,
andr = dim n_l(x) > 1forx € M.Let B : J — E beaninjective regular C path such that
its tangent vector B(s) at s is not a vertical vector for all s € J, B(s) & AY Bs)s i particular,

the path B can be horizontal, i.e. B(s) € Aﬁ(s) forall's € J, but generally the vector B(s) can

13 it happensthaizl(sg) Oandjzjo(so) # 0forsomeg # 1, we have simply to renumber the local coordinates
to getyV (so) # 0. Practlcally this is a transition to new coordinate§ — {z'} with z! = y' and, for instance,
70 =yl andz’ = y' for i # 1, ig, in which the first component gf is non-zero. We suppose that, if required,
this coordinate change is already done. If occasionally it happen$r§ﬂ(a) # 0 for all s € J and fixedjp, it is
extremely convenient to take this particular componerjt aSj/)l,—see the next sentence.
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have also and a vertical component for some or all s € J. Then, for every so € J, there exist
a neighborhood U1 of the point B(so) in E and bundle coordinates {ii'} on Uy which are
solutions of (5.1) for U = Uy N B(J) = B(J1), with J1 :={s € J : B(s) € U1}, i.e. along
the restricted path B| j,. All such bundle coordinates (!} are given via Eq. (5.6).

Proof. Consider the chartl(y, u) with U1 > B(so) provided byLemma 5.1for E and 8
instead of\f andy, respectively. For any e U, there is a uniques(z) € J; x RIMzE-1
such thap = u~1(s, 1), i.e., in the coordinatels’} associated to, the coordinates gf are
ul(p) = s andu!(p) = ! e Rfor I > 2. Besides, we have(8(s)) = (s, ty) for all s € J1
and some fixedy € RIM:E-1,

Since B(s) is not a vertical vector for alk € J, the coordinategu’} can be chosen
to be bundle coordinates. For the purpose, in the proof of Lemma 5.1 one must choose
{y'} as bundle coordinates and to take ﬂ%(so) any non-vanishing component between
BL(s0). .. .. Bi(s0), viz. if Bl(s0) # O the proof goes as it is written and, f(so) = 0,
choose somgg such tha°(so) # 0 and make, e.g., the changl(so) < B4°(so). This,
together with(5.4), with u’ for x*, ensures thaty’} — {u!} is an admissible change, so
that{u} are bundle coordinates if the initial coordinafe$} are such ones.

Let {u’} be so constructed bundle coordinates ane- u~1, so thatg(s) = (s, o).
Expanding:®(n(s, t)) into a first order Taylor’s polynomial at the poifit € K, we find the
general solution of5.1), with U = 8(J1) = U1 N B(J), in the form

i@“(n(s, 1)) = B(s) + By (M= (BN (nls, 1) — u (B(s))]
+[u (s, 1)) = u"(BEN]) + B (s, £ mlu’ (n(s, 1))

—u! (BN’ (n(s, £)) — u’ (BN, (5.6)

where B%, B : J1 — K = R, det[B}] # 0, co, and theC? functions B¢, and their first
partial derivatives are bounded whenr> tg. (Notice, the terms withh = 1 and/orl/ =1

and/orJ = 1 do not contribute ir{5.6) asul(5(s, t)) = s and, besides, the functiorBy,

can be taken symmetric inandJ, B{, = BY;.) O

Remark 5.1. If there isso € J for which B(so) is a vertical vectorf(so) € AY, ), then

Proposition 5.3emains true with the only correction that the coordingte$ will not be
bundle coordinates. If this is the case, the constructed coordir{@f@swill be solutions

of (5.1), but we cannot assert that they are bundle coordinates which are (locally) normal
alongg in a neighborhood of the poifi(so).

Proposition 5.3can be generalized by requiringto be locally injective instead of
injective, i.e. for each € J to exist a subinterval; C J such that/; > s and the restricted
path |, to be injective. Besides, if one needs a version of the above results for complex
bundles, they should be considered as real ones (with doubled dimension of the manifolds)
for which are applicable the above considerations.

Corollary 5.1. Ar any arbitrarily fixed point in E andlor along a given injective regular
C1 path in E, whose tangent vector is not vertical, there exist (possibly local, in the latter
case) normal frames.
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Proof. SeeDefinition 4.1, Propositions 5.2 and 5.8nd Eq(5.1). Ifthe pathis not contained

in a single coordinate neighborhood, one should cover its image in the bundle space with
such neighborhoods and, then, to agptgposition 5.3in the intersection of the coordinate
domains, the uniqueness (and, possibly, continuity or differentiability) of the normal frames
may be lost. O

Definition 5.1. Local bundle coordinatgg’}, defineg on anopen sétC E, will be called
normal onU C 'V for a connectiomA” if the frame{X} in T(E) adapted tdd/dii’} over
Vis normal fora” on U.

Corollary 5.1implies the existence of coordinates normal at a given point or (locally)
along a given injective path whose tangent vector is not vertical; in particular, there exist co-
ordinates normal along an injective horizontal path. However, normal coordinates generally
do not exist on more general subsets of the bundle spageriterion for existence of co-
ordinates normal on sufficiently general subgéts E, e.g. on ‘horizontal’ submanifolds,
is given byTheorem A.1in Appendix A In particular, we have the following corollary from
this theorem.

Proposition 5.4. If A" is a Ct connection, U is an open set in E, and normal frames for
A" on U exist, then there are holonomic such frames if A" is flat on U. Said otherwise, the
system of Eq. (5.1) may admit solutions on an open set U if

RZU|U =0, (5.7)
where

Re, = 9u(1) = 0u(T) + T05(Iy) = IV 3u(T) = X () = Xu(T) (5.8)
are the (fibre) components of the curvature of A" in some frame {X;} on E adapted to a
holonomic one (see also [19]).

Remark 5.2. However, in the general case the flatness of a connection on an open set is
only a necessary, but not sufficient, condition for the existence of coordinates normal on
that set—se@heorem A.lin Appendix A Exceptions are the linear connections on vector
bundles—se&emark A.3n Appendix A One can easily show that part of the integrability
conditions for(5.1) for an open sel are

G Pt out
T Quvout durdu’  dub MY
from whereProposition 5.4mmediately follows. However, the flatness of the connection

on U generally does not imply the rest of the integrability conditions, 83%¢ /9u® gu* —
9251 /duM ub = 0 andd?i®/oub duc — 325 /ducdu® = 0.

(5.9)

The combination oPropositions 5.4 and 4itplies the non-existence of coordinates
normal on an open set for non-flat (non-integrable) connections.
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6. Normal frames on vector bundles

The normal frames for covariant derivative operators (linear connections), other deriva-
tions, and linear transports along paths are known and studied objects in vector bundles
[10,11] The goal of the present section is to be made a link between them and the general
theory of Sectiont.

Consider a linear connection’ on a vector bundleK, =, M), i.e. a connection the
assigned to which parallel transport is a linear mapping. Let the ffamen T(E) be
given by(3.33)and{ X} be the frame adapted te;} for A”. Then, byProposition 3.1the
2- and 3-index coefficients o’ are connected vié3.34)in which {x%} are vector fibre
coordinates.

Proposition 6.1. A frame {X;} is normal on U C E for a linear connection A" if and only
if in it vanish the 3-index coefficients of A" on 7(U) € M,

ryjl,=0 < F;M|H(U) =0. (6.1)
Proof. Sinceu"t!, ... u™*" are 1-forms which are linearly independent for ple U,
the assertion follows from E¢3.34) O

CombiningProposition 6.Wwith (3.43) we see that the normal frame E4.1)in vector
bundle is equivalent to

(B, Ty, + By)lxw) =0 (6.2)
or to its matrix variant (see alg8.43); I', := [T}, ], B, := [BZM])
(BZFV + Bu)|n’(U) =0. (6.2)

Taking into account6.2) and (3.42)we can assert that the frarh€;} adapted to the frame

@ 2a) = (v e) Buox ° (6.3)
e,,eq) = (ey, ep) - , .
Homa v b —((Bﬁ]"f)t) om)-u® Blom

where [B)] and [B}] are non-degenerate matrix-valued functions, is normal/dor Al
and henceX; = &;, by virtue ofProposition 4.2Recall (se¢3.21), (3.22), and (3.2§)the
changele;} — {e;}, given by(6.3), entails{X;} — {X;}, where

X, = (B, omX,, X, = (B o 1) Xy, (6.4)

which is equivalent t§E;} +— {E;} with
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E,=BJE,  E.,=BJE,. (6.5)

Here (se€3.27) {E,, = m«|n (X)) is aframe inl (M) and{E, = v1(X,)}is aframein
E.

Thus, if additional restriction are not imposed, the theory of normal frames in vector
bundles is rather trivial, which reflects a similar situation in general bundles, considered in
Sectiond. However, the really interesting and sensible case is when one considers frames
compatible with the covariant derivatives. As we know (§&d4), it corresponds to ar-
bitrary non-degenerate matrix-valued functiom, ] and B = [B}] and a matrix-valued
functionsB,, = [BZM] given by

B, =Eu(B) - B"'=B)E,(B)- B (6.6)

In particular, such are all holonomic framesnigE), locally induced by local coordinates
on E. Now the normal frames E¢6.2) (or (4.1)) reduces to

(I'w - B+ Ew(B))lxw) = 0. (6.7)

This equation leaves the frangéu = 1| 4 (X 1)} in T(M) completely arbitrary and im-
poses restriction on the franp&, = v=1(X,) = BYEy} in E. This conclusion justifies the
following definition.

Definition 6.1. Given alinear connectionA” on avector bundle E, m, M) and a subset
Uy C M. A frame {E,} in E, defined over an open s#&}, containingU,, or equal to it,
Vu 2 Uy, is callednormal for A" overlon Uy, if their is a frame{X;} in T(E), defined
over an open se¥x C E, which is normal forA” over a subset/x C E and such that
7(Ug) = Uy, n(VE) = Vi, and E, = v=1(X,), with the mappingv defined by(3.14)
Respectively{E,} is normal forA” along a mapping : Qy — M, Oy # 9, if {E,} is
normal forA” overg(Q ).

Taking into accounDefinition 4.1 we see that the so-defined normal frames in the
bundle spacé& are just the ones used in the theory of frames normal for linear connections
in vector bundle$10,11,7-9]

Itis quite clear, to any framgX;} in T(E) normal ovel/ C E, there corresponds a unique
frame{E, = v~1(X,)} in E normal overr(U) C M. But, to a framg E,} in E normal over
n(U), there correspond infinitely many framex} = {(7r«| 4n) "X (E,), v(E,)} in T(E)
normal overU, where{E,, } is an arbitrary frame i (M) oversw(U). Thus the problems of
existence and (un)uniqueness of normal frame&(if) is completely reduced to the same
problems for normal frames if. The last kind of problems, as we noted at the beginning
of the present section, are known and investigated and the reader is refdfreéd ig7—9]
for their solutions and further details.

We emphasize that a normal frarf¥e,} in E, as well as the basi®(E,)} for AV, can be
holonomic as well as anholonomic (dee. cit.); at the same time, a normal frarfi€;} in
T(E) is anholonomic unless some conditions hold, a necessary condition being the flatness
(integrability) of the horizontal distributios” .

Ending this section, let us say some words regarding frames normal for affine connections
on vector bundles.
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Proposition 6.2 (cf. Proposition 6.). A frame {X;} is normal on U C E for an affine

connection A", with 2-index coefficients (3.54)on U, if and only if in it is fulfilled
Fl?;An(U) =0, (6.8a)

Proof. The assertion follows fror@efinition 4.1, Eq.(3.54) and the linear independence
of the vector fibre coordinateg ™1, ..., u"*", considered as 1-forms. [

Corollary 6.1. A necessary condition for existence of frames normal on U C E for an
affine connection is

GZ'”(U) =0 (6.9)

in all adapted frames on U.
Proof. Use(6.8b) and (3.56h) |

Corollary 6.2. A necessary condition for existence of frames normal on U C E for an
affine connection is

ity = —{(Ig, om) - u’u (6.10)

in all adapted frames on U in particular, if U is an open set, then (6.10)means that the
restriction of the connection considered on (U, 7|y, w(U)) is a linear connection.

Proof. Apply Proposition 6.2andCorollary 6.1 |

Corollary 6.3. If an affine connection admits frames normal on U C E, then all of them are
normal on U for the linear connection, corresponding to it via Eq. (3.54) and vice versa.

Proof. UseCorollary 6.2andProposition 6.1 O

Thus, if the conditior{6.9)is satisfied, the above results completely reduce the problems
of existence, (un)uniqueness and the properties of frames normal for affine connections to
the same problems for linear connections (that correspond to them).

7. Conclusion

In Section4, we saw that the theory of normal frames in the most general case is quite
trivial. This reflects the understanding that the more general a concept is, the less particular
propertiesithas, butthe more concrete applicationsit canfind if itis restricted somehow. This
situation was demonstrate when normal frames adapted to holonomic ones were considered;
e.g. they exist at a given point or along an injective horizontal path, but on an open set they
may exist only in the flat case. A feature of a vector bundler, M) is that the frames in
T(E) overE are in bijective correspondence with pairs of frameg mverM and inT (M)
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over M. This result allows the normal frames T(E), if any, to be ‘lowered’ to ones in
E. From here a conclusion was made that the theory of fram&g$i) normal for linear
connections on a vector bundle is equivalent to the existing one of franiesanmal for
covariant derivatives inK, =, M) [10,11]

It should be emphasized, the importance of the normal frames for the physics comes
from the fact that they are the mathematical object corresponding to the physical concept
of inertial frame of referencg4,10,25]
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Appendix A. Coordinates normal along injective mappings with non-vanishing
horizontal component

The purpose of this appendix is a multi-dimensional generalizati®magosition 5.3n
the real casek = R. It is formulated below a$heorem A.1For its proof we shall need a
result which is a multidimensional generalization.eimma 5.1

Lemma A.l. LetneN, M be a C3 manifold with dimM > n, J" be an open set in
R”, and y : J* — M be C* regular injective mapping. For every sq € J", there exists a
chart (U1, x) of M such that y(so) € U1, x : Uy — Ji X RAMM =1 g5 some open subset
Ji € J", 50 € Ji, and x(y(s)) = (s, to) for some fixed ty € RIMeM=1 gnd gl s € JTi.

Proof. Let us choose arbitrary somg € J" and a chart, y) with U > y(so) andy :
U — RIMM Since the regularity of atso means that Ei(y;/as“)ko] has maximal rank,

equal ton, we, without loss of generality, can suppose the coordir{atgso be taken such
that det[@y)‘,’/asb)|so] # 0, 00.1* Then the implicit function theorefl 3,22, 23]implies the

existence of a subneighborho@fl € J" with Ji > spand suchthatthe matrix&[(/ff/asb)|s]
is non-degenerate fore Ji and the mapping )

(Vyl,nwl/;f)ljg LI = (D). Y ID) S R
with (v, .., vl 2 s = (75(5), -, vii(s)) for s € J, is aC* diffeomorphism. Define
a chart {1, x) of M with domain

Uri={plp e U y(p) e yy(J1).a=1,....n}

= Yy ML), . yRIE) x RAMMTR) 5 (50) (A.1a)

14 If we start from a chartl, z) for which the matrix [Oyg/as”)\so] is degenerate, we can make a coordinate
chang€z'} — {y'} with y' = z%, where the integens;, .. ., adimy» form a permutation of 1 . ., dimg M, such
that [(ay;f/ashnso] is non-degenerate. (For the proof, see any book on matrice$26,87]) Further, we suppose
that such a renumbering of the local coordinates is already done if required. (cf. Footnote 13).
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and local coordinate functions given via

y=(yy Jn)o(xl,...,x"), a=1...,n,
7 1
o= xk 4+ (yf Jf) o(xt, ..., X" — té, k=n+1,...,dimgrM, (A.1b)
where ¢, ..., x") : p> (xX(p),...,x"(p)), p € U1, andzl € R are constant numbers.

Sincedy*/ax" = Sy;l/asb, Ay oxk = 8t fork>n+1, Ay~ Jox® = 8y1y‘/8s‘1 fork >n+
1, anddyk/ax! = 8k for k,1 > n + 1, the Jacobian of the chang€’} — {x'} on Uy is
detfox' /9y/] = (detfdy4/ds?]) ! # 0, co. Consequently’ are really coordinate functions
andx cUL— J] x RAIMRM —n is in fact coordinate homeomorphismThe coordinates
{x'} can be expressed throudt} explicitly. Indeed, writing the first raw fA.1b) as

OL o ) = 0 ) o ) = Ry o (),
and using that}(}%, e, y;‘)|Jf is aC?! diffeomorphism and the second raw @f.1b), we
find (cf. (5.4))

(xl, LX) = (()/yl., e, ;)Ug)_l o (yl» Y,

K=y = ) o (s YD) oY) 16 k=n+ L

(A.1b)
Using(A.1), we see that inl{1, x) the local coordinates gf(s) for s = (s%, ..., s") € J
are

Ys) i=x(v) =% A=A =6 k=zn+1, (A.2)
i.e. x(y(s)) = (s, fo) for some fixectg = (4%, ..., 1§™M) ¢ RdiMaM—n [

Thus, in the chart{(s, x) or the coordinategx’} constructed above, the firstcoor-
dinates of a point lying in/(J"), i.e. in y(J7), coincide with the corresponding param-
eterssl,...,s" of y, the remaining coordinates, if any, being constant numbers. This
conclusion allows locally, irU;, the mappingy to be considered as a representative of
a family of mappings;(-, £) : J§ — M, t € RAMM=n defined byn(s, ) := x~ (s, ¢) for
(s, 8) € J§ x RIMM=n | fact, we havey = n(-, to) or y(s) = n(s, to).1

Let (E, , M) be aC® bundle endowed witl'! connectionA”. Letk € N, k < dim M,
and J* be an open set ift*. Consider aC? regular injective mapping : J* — E such
that the vector fieldS, : s > By(s) := (387 (s)/05*)(8/u")|p(s), With s 1= (s1, ..., s5) €
J¥anda =1, ..., k, donor belong to the vertical distributiol?, B,(s) & A}fx(s) for all
s € JK; inparticular, the mapping can be a horizontal mapping in asenseﬂ,ﬁi) € Ag(s)

for all s € J*, but generally these vectors can have a vertical component too. Our aim is to

15 The so-constructed chail’{, x) is, obviously, a multidimensional generalization of a similar chart defined in
the proof of Lemma 5.1—see the paragraph containind&4).
16 In [9] the existence of is taken as a given fact without proof.
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find the integrability conditions for the normal frame/coordinateg&d.)and its solutions,
if any, whenU = g(J¥) for some subsetf < J*.

Let us take somey € J* and construct the chart/g, u) with Uy > B(so) provided by
Lemma A.1with E for M andg for y. If JX := {s € J* : B(s) € U1} andp € Uy, then there
is a unique(, t) € JF x RAIM=E—k gych thatp = n(s, ) with n == u~1, i.e.u!(p) = s for
I=1,...,kandu’(p) =t forI =k +1,...,n+ r. Besides, we have(B(s)) = (s, to)
forall s € J1 and some fixedy € RIMzE—k Slnce the vector er|dSa, a=1 ...,k are
not vertical, we can construct the coordlna{tﬂé} associated to the chai/{, u) so that
they to bebundle coordinates ori/; (see the proof okemma A.). Thus onU; we have
bundle coordinateg:’} such that

W (s, 1), ..., u" " (n(s, 1)) := (s, t) € R",
s=(st ... N ek e = (L Ty e RUTR (A.3)

Let the indicesx and 8 run from 1 tok and the indices and r take the values form
k + 1lton;wesetv = v = @if k = n. Thus, we have®(n(s, t)) = s*, u®(n(s, t)) = ¢°, and
u(n(s, t)) = 1.

Proposition A.1. Under the hypotheses made above, the normal framelcoordinates Eq.
5.D)withU = ,3(]’1‘) = B(JX) N Uy has solutions if and only if the system of equations
Bj(s) + T2 (B(s))

(ar£ afé’) OB

wP  u

RRVAF'®

where I are the 2-index coefficients of A" in {u!}, has solutions By . J1 — R with

det[Bj] # 0, co. Besides, if such solutions exist, then all solutions of (5.1) are given on
U1 by the formula

i“(n(s, 1) = — / s S($) T2 (B(s)) ds* — By(s) T (B(s)u (nls, 1)) — u (B(s))]

1

8BZ ()

— TH(B(s)) =0, (A.4)

+ Bi()[u" (n(s, 6)) — u” (BEN] + £ (53 8 ) (n(s, 1))
— ul (BNILu" (n(s, 1)) — u”(B(s))]. (A.5)
where s1 € Jl is arbitrarily fixed, By, with det[Bj] # 0, oo, are solutions of (A.4), and the

functions f};, and their first partial derivatives are bounded when t — to.

Remark A.1. Asu®(n(s, t)) = u“(B(s)) =s* foralla =1, ..., k, the terms withu, v =
., k in (A.5) have vanishing contribution.

Remark A.2. Fork = 1, we havexr = 8 = 1, due to which EqqA.4) are identically valid
andProposition A.Ireduces td’roposition 5.3

Proof. To begin with, we rewrité5.1) as
o o ouf

0s% B(s) - 31‘”

o
— T a0
BGs) o

rL(B(s)).
B(s)

ou
GO .
AS) !
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Introducing a non-degenerate matrix-valued functisfy on J’l‘ by

on i (s, )
b(s) = b = b ; (A.6)
Bls) t=tg
we see thaf5.1)is equivalent to
— =—By(s)I,)(B(s), a=1, ...,k (A.7a)
5%
B(s)
=—By()I,(B(s), o=k+1,....n (A.7b)
7 [ ps)

Expandingu™(n(s, t)) into a Taylor’s polynomial up to second order terms relative to
(t — o) about the pointg and usingA.6) and(A.7), we get:

i“(n(s, 1) = f(s) — By()IL B — 18] + Bi(s)[” — 1g]
+ fo(si s me” — 1g1le" — 1]
= f(s) — By(s)T(B(s)[ut (n(s. 1)) — u™(B(s))]
+ Ba(s)lub (n(s. 1) — u” (B(s))]
+ £4 (s [t (n(s. £)) — ut (B (n(s. ) — " (BE))).  (A.8)

where f“ and £, areC?! functions andf};, and their first partial derivatives are bounded
whent — to. Eq. (A.7a) is the only condition that puts some restrictions Shand B}
(besides def;] # 0, o0). Inserting(A.8) into (A.7a) and using thap(s) = n(s, to), we
obtain

9f“(s)

asv

= —B(s)I'2(B(s)).- (A.9)

Thus the initial normal coordinates equati(ml), with U = /S(Jf), has solutions if and
only if there exist solutions ofA.9) relative to f* and/orB;. The integrability conditions
for (A.9) are[20]

82 fa 82 fa
T 9sPose 9s99sP

_as%(Bz‘(s)F,f () + 8sia(B;;‘(s)r/g’(s)) =,

and coincide with(A.4), by virtue ofu®(B(s)) = s“. This result concludes the proof of the
fires part of the proposition.

If (A.4) admits solutionsBj, with det[B}] # 0, oo, then the general solution @A.9) is
[4s) = =[5, Bi(s)[2(B(s)) ds* for somes; € Ji and this solution is independent of the
integration path in/%, due to(A.4). O

Lemma A.2. Let (E, 7w, M) be a C3 bundle endowed with C 2 connection with coefficients
I'}} in the frame adapted to local coordinates {u'}, defined before Proposition A.1. There
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exist solutions B with det[Bj] # 0, oo of the system of Eq. (A.4) if and only if the coefficients
I satisfy the equations

Ri(B(s)) =0, seJy, (A.10a)
2
rd "Iy _d Iy
“ uboud B ouboud

in which R}, are the (fibre) components in {(u'} of the curvature of A", defined by (5.8).
If the conditions (A.10) are valid, the set of the solutions of (A.4) coincides with the set of
solutions of the system

=0, seJk, (A.10b)
B(s)

B¢ ore oD}
b(5) _ _ pagy) L b(s) (A.L1)
os u” | gs) os
relative to Bj,, where Dj, are solutions of
T2 5~ THAE) - ) Dys) = 0 (A12)
o asP BRI Gga b= = |

Proof. Consider the integrability conditigqi\.4) for (5.1)in more details. Define functions
D}, : J¥ — K = R via the equation

B (s) ore
a};a = —B(s) au‘,j » + D&, (s). (A.13)
S

The substitution of this equality int@\.4) results in
R (B(5)) By (s) — I (B(5)) Digs(s) + TR (B(5)) Di () = O,

where Ry, are the (fibre) components i’} of the curvature ofA”, defined by(5.8).
The simple observation th§&®, ii¢}, if they exist as solutions db.1), are normal coor-
dinates on the whole bundle space of the restricted budle|(;, 7(U)) with U = ﬁ(J’f)
leads to

Ris(B(s)) =0, seJy, (A.14)
by virtue of Proposition 5.4Therefore the previous equation reduces to
L2 (B(s)) Dijg(s) — TH(B() Do (s) = 0. (A.15a)

It is clear that(A.13)—(A.15a)are equivalent t¢A.4). Consequently, the quantitie3;,
must be solutions gfA.15a)while theC?! functionsBj have to be solutions ¢fA.13). The
integrability conditions §/ds#ds* — 92/5s*3s”) By (s) = 0 for (A.13) can be written &<

17 At this point one should requira” to be of clas<? which is possible if the manifolds andM are of class
cs.
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- B
P " duoud T ub aud  oub oud <)

( o°re  ry  ardarg org ar;’)
A

aDg (s)  9Djg(s)
_ =0
asP ds¥
which conditions split into

_ D5,(s) _ 9Dgp(s)

)

0= "t L2 (A.15h)
o (P, Py ardery orfor
uboub  wu*oub  ub oud  ub ud
B(s)
92re 92rc
_ d B d
= <—Fa 8uh3ud+rﬂ auhazd> , (A.16)
B(s)

where(A.14) and (5.8)were applied in the derivation of the second equalitfAri6).

Since the system of Eq8A.15) always has solutions, e.@.’ga(s) = 0, we can assert that
(A.14) and (A.16)are the integrability conditions f¢A.4) and, if(A.14) and (A.16)old,
every solution ofA.13), with D}, satisfying(A.15), is a solution 0{A.4) and vice versa.

At the end, the only unproved assertion is thgj, in (A.13) equals ta, (D7) with D}
satisfying(A.12). Indeed, sincef’l‘ isan open setand henceis contractible one, the Pdilscar
lemma (se¢28, Section 6.3)r [29, pp. 21, 106]implies the existence of functior3] on
J§ such thatD? (s) = d.(D$)(s), due to(A.15b), inserting this result int¢A.15a) we get
(A.12). O

Remark A.3. Regardless thatthe conditiof#s 10b)look quite special, they are identically
valid for connections with

= —(Ig on)-u’ +G%om, (A.17)

wherel?, andG¢ are C2 functions onr(8(J%)). In particular, of this kind are the affine
and linear connections on vector bundles—Beapositions 3.1 and 3.2

At last, we shall formulate the main result of the above considerations as a combination
of Proposition A.landLemma A.2

Theorem A.1. Let (E, , M) be a C3 bundle endowed with a C? connection. Under the
hypotheses made and notation introduced before Proposition A.1, there exist solutions of
the normal framelcoordinates Eq. (5.1) if and only if the connection’s coefficients satisfy
Egs. (A.10). If these equations hold, all coordinates normal on ﬂ(J]l‘) are given on Uy by
(A.5), where B, are solutions of (A.11), with Dj, being solutions of (A.12).

Remark A.4. Ifthere areso € JKanda € {1, ..., k} such thatthe vecttﬁa(so) is a vertical
vector, B, (so) € Ag(so), thenTheorem A.lremains true with the only correction that the
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coordinategu’} will not be bundle coordinates. If this is the case, the constructed coordi-
nates{ii/} will be solutions of(5.1), but we cannot assert that they are bundle coordinates
which are (locally) normal along in a neighborhood of the poirfi(so).

Theorem A.1lprovides a necessary and sufficient condition for the existence of local
coordinates in a neighborhood Bso) for anyso € J* which are locally normal along,
i.e. onp(J5) for some open subset C J* containingso. Moreover, if this condition is
valid, the theorem describes locally all coordinates normal afng

Theorem A.lcan be generalized by requirigdo be locally injective instead of injective,
i.e. for eachs € J to exist subsef! < J* such that* > s and the restricted mapping
to be injective. Besides, if one needs a version of the above results for complex bundles,
they should be considered as real ones (with doubled dimension of the manifolds) for which
are applicable the above considerations.
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